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Motivation

• PQC schemes have been proven to not be leakage resistant 
[EMVW ’22, KM ’22]12

• No scheme submitted to the new NIST call for digital signatures 
was investigated from this perspective

  1 Andre Esser, Alexander May, Javier A. Verbel, and Weiqiang Wen. Partial key exposure attacks on BIKE, rainbow and NTRU, Crypto 2022.
2 Elena Kirshanova and Alexander May, Decoding McEliece with a Hint–Secret Goppa Key Parts Reveal Everything, SCN 2022.



Motivation

• PQC schemes have been proven to not be leakage resistant 
[EMVW ’22, KM ’22]12

• No scheme submitted to the new NIST call for digital signatures 
was investigated from this perspective

We analyze the leakage resistance of (Round I) 
Rank-based candidates, that is RYDE, MiRitH

and MIRA 

  1 Andre Esser, Alexander May, Javier A. Verbel, and Weiqiang Wen. Partial key exposure attacks on BIKE, rainbow and NTRU, Crypto 2022.
2 Elena Kirshanova and Alexander May, Decoding McEliece with a Hint–Secret Goppa Key Parts Reveal Everything, SCN 2022.



NIST Candidates, Round 1
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NIST Candidates, Round 2

• CROSS

• FAEST

• HAWK

• LESS

• MAYO

• Mirath (merger of MIRA/MiRitH)

• MQOM

• PERK

• QR-UOV

• RYDE

• SDitH

• SNOVA

• SQIsign

• UOV
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Methodology

• We answer the following questions:
• Erasure model: given a 𝑛-bit erased secret key where 𝑡 bits are leaked, 

what is the security of the remaining 𝑛 − 𝑡 bits?
• Error model: given a 𝑛-bit erroneous secret key where every bit is 

swapped with probability 𝑝, can we recover the secret key?
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• Erasure model: given a 𝑛-bit erased secret key where 𝑡 bits are leaked, 

what is the security of the remaining 𝑛 − 𝑡 bits?
• Error model: given a 𝑛-bit erroneous secret key where every bit is 

swapped with probability 𝑝, can we recover the secret key?

• Asymptotic leakage bounds (poly-time)

• Practical leakage bounds
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RYDE, MiRitH and MIRA
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Secret Keys and Witness

We analyzed the leakage resistance 
of (Round I) Rank-based candidates, 
that is RYDE, MiRitH and MIRA 

RYDE (Rank-SD):
a rank-𝑟 vector 𝑥 over 𝔽2𝑚 of length 
𝑛 such that 𝐻𝑥 = 𝑠
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RYDE (Rank-SD):
a rank-𝑟 vector 𝑥 over 𝔽2𝑚 of length 
𝑛 such that 𝐻𝑥 = 𝑠

MiRitH and MIRA (MinRank): 
coefficients 𝛼1, … , 𝛼𝑘 ∈ 𝔽16 s.t. the 
matrix 𝐸 = 𝑀0 + σ𝑖=1

𝑘 𝛼𝑖𝑀𝑖  of 
dimension 𝑚 × 𝑛 on 𝔽16 has rank 𝑟

RYDE Witness (resp. MIRA): 
coefficients 𝛽0, … , 𝛽𝑟−1 ∈ 𝔽𝑞𝑚  of a 
𝑞-polynomial constructed from the 

solution 𝑥 (𝛼1, … , 𝛼𝑘 )
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𝒒-polynomials [Ore ’33]1 

Let 𝑥 = 𝑥1, … , 𝑥𝑛  be a Rank-SD solution. Let 𝑈 be the rank-𝑟 linear 
subspace generated by the support of 𝑥. The 𝑞-polynomial is 
defined as

𝐿𝑈 𝑋 = ෑ
𝑢∈𝑈

𝑋 − 𝑢 = 𝑋𝑞𝑟 + 
𝑖=0

𝑟−1

𝛽𝑖𝑋𝑞𝑖

61 Oystein Ore. On a special class of polynomials. Transactions of the American Mathematical Society.



𝒒-polynomials [Ore ’33]1 

Let 𝑥 = 𝑥1, … , 𝑥𝑛  be a Rank-SD solution. Let 𝑈 be the rank-𝑟 linear 
subspace generated by the support of 𝑥. The 𝑞-polynomial is 
defined as

𝐿𝑈 𝑋 = ෑ
𝑢∈𝑈

𝑋 − 𝑢 = 𝑋𝑞𝑟 + 
𝑖=0

𝑟−1

𝛽𝑖𝑋𝑞𝑖

MIRA: 𝑥 is the vector whose entries 
are the columns of 𝐸 seen as 

elements of 𝔽𝑞𝑚

61 Oystein Ore. On a special class of polynomials. Transactions of the American Mathematical Society.



The GRS Algorithm [GRS ’15]1

• Aim to find a subspace 𝐹 ⊂ 𝔽𝑞𝑚  that contains 𝑈 = supp 𝑥

71 Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of he rank syndrome decoding problem. IEEE Transactions on Information Theory.
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• Strategy: choose a random 𝐹 of dimension 𝑟′ and suppose U ⊂ 𝐹. 
Express every component 𝑥𝑖  of 𝑥 w.r.t. a basis of 𝐹, that is 𝑥𝑖 = σ𝑗=1

𝑟′
𝛾𝑖,𝑗𝑓𝑗  

for some unknown coefficients 𝛾𝑖,𝑗 ∈ 𝔽2 (𝑛𝑟′unknowns)

• The relation 𝐻𝑥 = 𝑠 gives 𝑛 − 𝑘 linear equations on 𝔽2𝑚, that can be 
embedded into 𝑛 − 𝑘 𝑚 linear equations on 𝔽2

• Choose 𝑟′ = 𝑚 𝑛−𝑘
𝑛

, solve the linear system and repeat the attack until

    the found solution 𝑥 has rank 𝑟
71 Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of he rank syndrome decoding problem. IEEE Transactions on Information Theory.



The Erasure Model 

1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0

1 ? 0 1 ? ? ? 0 0 ? 1 ? 1 0 ? 0 ? ? 0

Secret key

Erased key
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The Erasure Model 

1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0

1 ? 0 1 ? ? ? 0 0 ? 1 ? 1 0 ? 0 ? ? 0

Secret key

Erased key

ℙ 1 → ? = ℙ 0 → ?
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Rank-SD attack

• Suppose we know 𝑡 bits of a RYDE private key. Every bit gives one 
extra linear equation we can use to enhance the GRS attack

91 Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A new algorithm for solving the rank syndrome decoding problem, ISIT 2018.
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Rank-SD attack

• Suppose we know 𝑡 bits of a RYDE private key. Every bit gives one 
extra linear equation we can use to enhance the GRS attack

• We can take 𝑟′ = 𝑚 𝑛−𝑘 +𝑡
𝑛

and proceed as before until the found 
solution has rank 𝑟

• The GRS algorithm has been improved in [AGHT ’18]1 by exploiting 
the 𝔽2𝑚-linearity of the code. Our attack can easily be adapted to 
this modeling

91 Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A new algorithm for solving the rank syndrome decoding problem, ISIT 2018.



Impact on RYDE Parameters

• We achieve reduced complexity even without additional 
knowledge for RYDE
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Impact on RYDE Parameters

• We achieve reduced complexity even without additional 
knowledge for RYDE

Exploit the ceiling: guess 𝑡 bits such 
that we get the same number of 
equations and unknowns

Reapply the attack for all  
2𝑡 possible choices to reduce the 
complexity of 9 and 6 bits for RYDE 
NIST-I and NIST-III (Round I) 
parameters respectively 10



RYDE (Round I) bounds

Bit security                                Erasure rate 𝑝 
      RYDE submission              This work                  Polynomial                       60-bit

NIST I 147 138 0.61 0.71

NIST III 216 210 0.59 0.67
NIST V 283 283 0.64 0.69
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MinRank Attack

• Original instance: parameters (𝑚, 𝑛, 𝑘, 𝑟) over 𝔽16
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MinRank Attack

• Original instance: parameters (𝑚, 𝑛, 𝑘, 𝑟) over 𝔽16

• New instance: parameters (4𝑚, 4𝑛, 4𝑘, 4𝑟) over 𝔽2 

• Incorporate knowledge: parameters (4𝑚, 4𝑛, 4𝑘 − 𝑡, 4𝑟) over 𝔽2

• Solve the latter instance with any MinRank algorithm (e.g. Kernel-
Search)

12



MinRank bounds

   Erasure rate 𝑝,                       MIRA                          MiRitH “a”       
260operations                 

NIST I 0.27 0.26

NIST III 0.14 0.18

NIST V 0.10 0.11
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Partial Exposure of the 𝒒-polynomial

• Suppose to know 𝑡 bits of the coefficients 𝛽0, … , 𝛽𝑟−1 ∈ 𝔽𝑞𝑚  of a 
𝑞-polynomial

14



Partial Exposure of the 𝒒-polynomial
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• Recovering the unknown coefficients is equivalent to solving a 
MinRank instance of parameters (𝑚𝑣, 𝑚𝑣, 𝑚𝑣𝑟 −  𝑡, 𝑚 − 𝑟 𝑣)
over 𝔽2 (for RYDE, 𝑣 = 1; for MIRA, 𝑣 = 4)
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• Suppose to know 𝑡 bits of the coefficients 𝛽0, … , 𝛽𝑟−1 ∈ 𝔽𝑞𝑚  of a 
𝑞-polynomial

• Recovering the unknown coefficients is equivalent to solving a 
MinRank instance of parameters (𝑚𝑣, 𝑚𝑣, 𝑚𝑣𝑟 −  𝑡, 𝑚 − 𝑟 𝑣)
over 𝔽2 (for RYDE, 𝑣 = 1; for MIRA, 𝑣 = 4)

• Solve the latter instance with any MinRank algorithm

• Unique solution as long as 𝑡 > 𝑚𝑣𝑟 −  𝑣𝑟2

14



Bounds

   Erasure rate 𝑝,                       RYDE                              MIRA
260operations                 

NIST I 0.21 0.14

NIST III 0.12 0.09

NIST V 0.09 0.08
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The Error Model 

1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0

Secret key 𝑥

Erroneous key 𝑥
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The Error Model 

1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0

Secret key 𝑥

Erroneous key 𝑥

ℙ 1 → 0 = ℙ 0 → 1 = 𝑝
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The Error Model 

1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0

Secret key 𝑥

Erroneous key 𝑥

ℙ 1 → 0 = ℙ 0 → 1 = 𝑝

𝑥 = 𝑥 + 𝑒
16



General Strategy (RYDE)

• Generic translation of the erasure attack to the error setting
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General Strategy (RYDE)

• Generic translation of the erasure attack to the error setting

• We exploit the sparseness of 𝑒 by guessing zeros in the error vector and 
then perform the erasure-enhanced (improved) GRS attack 

• Polynomial-time recovery if 𝑝 = 𝑂 log 𝑛𝑚
𝑛𝑚

• Similar attacks for MinRank schemes and 𝑞-polynomial setting. No 
polynomial regime

17



Conclusion and Open Questions

• Non-trivial polynomial time recovery for RYDE, plus an improvement of 
the best generic attack

• Efficient attack for MIRA and MiRitH as long as roughly 73-74% of the 
secret key material is leaked (NIST-I)

• Initiated the study of partial exposure of the witness in constructions 
following the MPC-in-the-Head paradigm
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Conclusion and Open Questions

• Non-trivial polynomial time recovery for RYDE, plus an improvement of 
the best generic attack

• Efficient attack for MIRA and MiRitH as long as roughly 73-74% of the 
secret key material is leaked (NIST-I)

• Initiated the study of partial exposure of the witness in constructions 
following the MPC-in-the-Head paradigm

• Can we design an algorithm that is able to exploit information on 
the witness as well as the secret key?
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THANKS! QUESTIONS?

https://eprint.iacr.org/2024/2070
19


	Diapositiva 1: Partial key exposure attacks on NIST rank-based candidates
	Diapositiva 2: Motivation
	Diapositiva 3: Motivation
	Diapositiva 4: NIST Candidates, Round 1
	Diapositiva 5: NIST Candidates, Round 2
	Diapositiva 6: Methodology
	Diapositiva 7: Methodology
	Diapositiva 8: Methodology
	Diapositiva 9: RYDE, MiRitH and MIRA
	Diapositiva 10: Secret Keys and Witness
	Diapositiva 11: Secret Keys and Witness
	Diapositiva 12: Secret Keys and Witness
	Diapositiva 13: corsivo grassetto q-polynomials [Ore ’33]1 
	Diapositiva 14: corsivo grassetto q-polynomials [Ore ’33]1 
	Diapositiva 15: The GRS Algorithm [GRS ’15]1
	Diapositiva 16: The GRS Algorithm [GRS ’15]1
	Diapositiva 17: The GRS Algorithm [GRS ’15]1
	Diapositiva 18: The GRS Algorithm [GRS ’15]1
	Diapositiva 19: The Erasure Model 
	Diapositiva 20: The Erasure Model 
	Diapositiva 21: Rank-SD attack
	Diapositiva 22: Rank-SD attack
	Diapositiva 23: Rank-SD attack
	Diapositiva 24: Impact on RYDE Parameters
	Diapositiva 25: Impact on RYDE Parameters
	Diapositiva 26: Impact on RYDE Parameters
	Diapositiva 27: RYDE (Round I) bounds
	Diapositiva 28: MinRank Attack
	Diapositiva 29: MinRank Attack
	Diapositiva 30: MinRank Attack
	Diapositiva 31: MinRank Attack
	Diapositiva 32: MinRank bounds
	Diapositiva 33: Partial Exposure of the corsivo grassetto q-polynomial
	Diapositiva 34: Partial Exposure of the corsivo grassetto q-polynomial
	Diapositiva 35: Partial Exposure of the corsivo grassetto q-polynomial
	Diapositiva 36: Partial Exposure of the corsivo grassetto q-polynomial
	Diapositiva 37: Bounds
	Diapositiva 38: The Error Model 
	Diapositiva 39: The Error Model 
	Diapositiva 40: The Error Model 
	Diapositiva 41: General Strategy (RYDE)
	Diapositiva 42: General Strategy (RYDE)
	Diapositiva 43: General Strategy (RYDE)
	Diapositiva 44: General Strategy (RYDE)
	Diapositiva 45: Conclusion and Open Questions
	Diapositiva 46: Conclusion and Open Questions
	Diapositiva 47: THANKS! QUESTIONS?

