

Finanziato dall'Unione europea NextGenerationEU

Partial key exposure attacks on NIST rank-based candidates

Giuseppe D'Alconzo Andre Esser Andrea Gangemi Carlo Sanna

CrypTO Conference 2025, Torino

Motivation

- PQC schemes have been proven to not be leakage resistant [EMVW '22, KM '22]¹²
- No scheme submitted to the new NIST call for digital signatures was investigated from this perspective

Andre Esser, Alexander May, Javier A. Verbel, and Weiqiang Wen. Partial key exposure attacks on BIKE, rainbow and NTRU, Crypto 2022.
 2 Elena Kirshanova and Alexander May, Decoding McEliece with a Hint–Secret Goppa Key Parts Reveal Everything, SCN 2022.

Motivation

- PQC schemes have been proven to not be leakage resistant [EMVW '22, KM '22]¹²
- No scheme submitted to the new NIST call for digital signatures was investigated from this perspective

We analyze the leakage resistance of (Round I) Rank-based candidates, that is RYDE, MiRitH and MIRA

1 Andre Esser, Alexander May, Javier A. Verbel, and Weiqiang Wen. Partial key exposure attacks on BIKE, rainbow and NTRU, Crypto 2022.
 2 Elena Kirshanova and Alexander May, Decoding McEliece with a Hint–Secret Goppa Key Parts Reveal Everything, SCN 2022.

NIST Candidates, Round 1

Code-Based	Lattice-Based	MPC-in-the-Head	<u>Multivariate</u>
CROSS	EagleSign	Biscuit	3WISE
Enhanced pqsigRM	EHTv4	MIRA*	DME-Sign
FuLeeca	HAETAE	MiRitH*	HPPC
LESS	HAWK	MQOM	MAYO
MEDS	HuFu	PERK	PROV
WAVE	Raccoon	RYDE	QR-UOV
	SQUIRRELS	SDitH	SNOVA
<u>Other</u>			TUOV
ALTEQ	Symmetric-Based	Isogeny-Based	UOV
eMLE-Sig 2.0	AlMer	SQIsign	VOX
KAZ-SIGN	Ascon-Sign		
PREON	FAEST		
Xifrat1-Sign.I	SPHINCS-alpha		

NIST Candidates, Round 2

- CROSS
 QR-UOV
- FAEST RYDE
- HAWK SDitH
- LESS SNOVA
- MAYO SQIsign
- Mirath (merger of **MIRA/MiRitH**) UOV
- MQOM
- PERK

Methodology

- We answer the following questions:
 - <u>Erasure model</u>: given a *n*-bit erased secret key where t bits are leaked, what is the security of the remaining n t bits?
 - *Error model*: given a *n*-bit *erroneous* secret key where every bit is swapped with probability *p*, can we recover the secret key?

Methodology

- We answer the following questions:
 - *Erasure model*: given a *n*-bit *erased* secret key where *t* bits are leaked, what is the security of the remaining n t bits?
 - Error model: given a n-bit erroneous secret key where every bit is swapped with probability p, can we recover the secret key?
- Asymptotic leakage bounds (poly-time)

Methodology

- We answer the following questions:
 - *Erasure model*: given a *n*-bit *erased* secret key where *t* bits are leaked, what is the security of the remaining n t bits?
 - Error model: given a n-bit erroneous secret key where every bit is swapped with probability p, can we recover the secret key?
- Asymptotic leakage bounds (poly-time)
- Practical leakage bounds

RYDE, MiRitH and MIRA

Secret Keys and Witness

RYDE (Rank-SD): a rank-*r* vector *x* over \mathbb{F}_{2^m} of length *n* such that Hx = s

Secret Keys and Witness

RYDE (Rank-SD): a rank-r vector x over \mathbb{F}_{2^m} of length n such that Hx = s MiRitH and MIRA (MinRank): coefficients $\alpha_1, ..., \alpha_k \in \mathbb{F}_{16}$ s.t. the matrix $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ of dimension $m \times n$ on \mathbb{F}_{16} has rank r

Secret Keys and Witness

RYDE (Rank-SD): a rank-*r* vector *x* over \mathbb{F}_{2^m} of length *n* such that Hx = s MiRitH and MIRA (MinRank): coefficients $\alpha_1, ..., \alpha_k \in \mathbb{F}_{16}$ s.t. the matrix $E = M_0 + \sum_{i=1}^k \alpha_i M_i$ of dimension $m \times n$ on \mathbb{F}_{16} has rank r

RYDE Witness (resp. MIRA): coefficients $\beta_0, \dots, \beta_{r-1} \in \mathbb{F}_q^m$ of a q-polynomial constructed from the solution x ($\alpha_1, \dots, \alpha_k$)

q-polynomials [Ore '33]¹

Let $x = (x_1, ..., x_n)$ be a Rank-SD solution. Let U be the rank-r linear subspace generated by the support of x. The q-polynomial is defined as

$$L_U(X) = \prod_{u \in U} (X - u) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

q-polynomials [Ore '33]¹

Let $x = (x_1, ..., x_n)$ be a Rank-SD solution. Let U be the rank-r linear subspace generated by the support of x. The q-polynomial is defined as

$$L_U(X) = \prod_{u \in U} (X - u) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

MIRA: x is the vector whose entries are the columns of E seen as elements of \mathbb{F}_{q^m}

• Aim to find a subspace $F \subset \mathbb{F}_{q^m}$ that contains $U = \operatorname{supp}(x)$

- Aim to find a subspace $F \subset \mathbb{F}_{q^m}$ that contains $U = \operatorname{supp}(x)$
- Strategy: choose a random F of dimension r' and suppose $U \subset F$. Express every component x_i of x w.r.t. a basis of F, that is $x_i = \sum_{j=1}^{r'} \gamma_{i,j} f_j$ for some unknown coefficients $\gamma_{i,j} \in \mathbb{F}_2$ (nr'unknowns)

- Aim to find a subspace $F \subset \mathbb{F}_{q^m}$ that contains $U = \operatorname{supp}(x)$
- Strategy: choose a random F of dimension r' and suppose $U \subset F$. Express every component x_i of x w.r.t. a basis of F, that is $x_i = \sum_{j=1}^{r'} \gamma_{i,j} f_j$ for some unknown coefficients $\gamma_{i,j} \in \mathbb{F}_2$ (nr'unknowns)
- The relation Hx = s gives n k linear equations on \mathbb{F}_{2^m} , that can be embedded into (n k)m linear equations on \mathbb{F}_2

- Aim to find a subspace $F \subset \mathbb{F}_{q^m}$ that contains $U = \operatorname{supp}(x)$
- Strategy: choose a random F of dimension r' and suppose $U \subset F$. Express every component x_i of x w.r.t. a basis of F, that is $x_i = \sum_{j=1}^{r'} \gamma_{i,j} f_j$ for some unknown coefficients $\gamma_{i,j} \in \mathbb{F}_2$ (nr'unknowns)
- The relation Hx = s gives n k linear equations on \mathbb{F}_{2^m} , that can be embedded into (n k)m linear equations on \mathbb{F}_2
- Choose $r' = \left[\frac{m(n-k)}{n}\right]$, solve the linear system and repeat the attack until the found solution x has rank r

The Erasure Model

1101011001111010010

Secret key

1?01???00?1?10?0??0

The Erasure Model

1101011001111010010

$$\mathbb{P}[1 \to ?] = \mathbb{P}[0 \to ?]$$

Erased key

Secret key

1?01???00?1?10?0??0

8

Rank-SD attack

• Suppose we know *t* bits of a RYDE private key. Every bit gives one extra linear equation we can use to enhance the GRS attack

Rank-SD attack

• Suppose we know *t* bits of a RYDE private key. Every bit gives one extra linear equation we can use to enhance the GRS attack

• We can take
$$r' = \left[\frac{m(n-k)+t}{n}\right]$$
 and proceed as before until the found solution has rank r

Rank-SD attack

• Suppose we know *t* bits of a RYDE private key. Every bit gives one extra linear equation we can use to enhance the GRS attack

• We can take
$$r' = \left[\frac{m(n-k)+t}{n}\right]$$
 and proceed as before until the found solution has rank r

• The GRS algorithm has been improved in [AGHT '18]¹ by exploiting the \mathbb{F}_{2^m} -linearity of the code. Our attack can easily be adapted to this modeling

Impact on RYDE Parameters

• We achieve reduced complexity even *without additional knowledge for* RYDE

Impact on RYDE Parameters

• We achieve reduced complexity even *without additional knowledge for* RYDE

Exploit the ceiling: guess *t* bits such that we get the same number of equations and unknowns

Impact on RYDE Parameters

• We achieve reduced complexity even *without additional knowledge for* RYDE

Exploit the ceiling: guess *t* bits such that we get the same number of equations and unknowns

Reapply the attack for all 2^t possible choices to reduce the complexity of 9 and 6 bits for RYDE NIST-I and NIST-III (Round I) parameters respectively 10

RYDE (Round I) bounds

	Bit security		Erasure rate p	
	RYDE submission	This work	Polynomial	60-bit
NISTI	147	138	0.61	0.71
NIST III	216	210	0.59	0.67
NIST V	283	283	0.64	0.69

• Original instance: parameters (m, n, k, r) over \mathbb{F}_{16}

- Original instance: parameters (m, n, k, r) over \mathbb{F}_{16}
- New instance: parameters (4m, 4n, 4k, 4r) over \mathbb{F}_2

- Original instance: parameters (m, n, k, r) over \mathbb{F}_{16}
- New instance: parameters (4m, 4n, 4k, 4r) over \mathbb{F}_2
- Incorporate knowledge: parameters (4m, 4n, 4k t, 4r) over \mathbb{F}_2

- Original instance: parameters (m, n, k, r) over \mathbb{F}_{16}
- New instance: parameters (4m, 4n, 4k, 4r) over \mathbb{F}_2
- Incorporate knowledge: parameters (4m, 4n, 4k t, 4r) over \mathbb{F}_2
- Solve the latter instance with any MinRank algorithm (e.g. Kernel-Search)

MinRank bounds

Erasure rate <i>p</i> , 2 ⁶⁰ operations	MIRA	MiRitH "a"
NISTI	0.27	0.26
NIST III	0.14	0.18
NIST V	0.10	0.11

Partial Exposure of the q-polynomial

- Suppose to know t bits of the coefficients $\beta_0,\ldots,\beta_{r-1}\in \mathbb{F}_{q^m}$ of a q -polynomial

Partial Exposure of the q-polynomial

- Suppose to know t bits of the coefficients $\beta_0,\ldots,\beta_{r-1}\in \mathbb{F}_{q^m}$ of a q -polynomial
- Recovering the unknown coefficients is equivalent to solving a MinRank instance of parameters (mv, mv, mvr t, (m r)v) over \mathbb{F}_2 (for RYDE, v = 1; for MIRA, v = 4)

Partial Exposure of the *q*-polynomial

- Suppose to know t bits of the coefficients $\beta_0,\ldots,\beta_{r-1}\in \mathbb{F}_{q^m}$ of a q -polynomial
- Recovering the unknown coefficients is equivalent to solving a MinRank instance of parameters (mv, mv, mvr t, (m r)v) over \mathbb{F}_2 (for RYDE, v = 1; for MIRA, v = 4)
- Solve the latter instance with any MinRank algorithm

Partial Exposure of the q-polynomial

- Suppose to know t bits of the coefficients $\beta_0,\ldots,\beta_{r-1}\in \mathbb{F}_{q^m}$ of a q -polynomial
- Recovering the unknown coefficients is equivalent to solving a MinRank instance of parameters (mv, mv, mvr t, (m r)v) over \mathbb{F}_2 (for RYDE, v = 1; for MIRA, v = 4)
- Solve the latter instance with any MinRank algorithm
- Unique solution as long as $t > mvr vr^2$

Bounds

Erasure rate p , 2^{60} operations	RYDE	MIRA
NISTI	0.21	0.14
NIST III	0.12	0.09
NIST V	0.09	0.08

The Error Model

1101011001111010010

Erroneous key \tilde{x} 1001001000111000110

Secret key *x*

The Error Model

1101011001111010010

$$\mathbb{P}[1 \to 0] = \mathbb{P}[0 \to 1] = p$$

Erroneous key \tilde{x}

Secret key *x*

1001001000111000110

The Error Model

1101011001111010010

$$\mathbb{P}[1 \to 0] = \mathbb{P}[0 \to 1] = p$$

Erroneous key \tilde{x} 10

Secret key *x*

1001001000111000110

$$\tilde{x} = x + e$$

• Generic translation of the erasure attack to the error setting

- Generic translation of the erasure attack to the error setting
- We exploit the sparseness of *e* by guessing zeros in the error vector and then perform the erasure-enhanced (improved) GRS attack

- Generic translation of the erasure attack to the error setting
- We exploit the sparseness of *e* by guessing zeros in the error vector and then perform the erasure-enhanced (improved) GRS attack

• Polynomial-time recovery if
$$p = O\left(\frac{\log(nm)}{nm}\right)$$

- Generic translation of the erasure attack to the error setting
- We exploit the sparseness of *e* by guessing zeros in the error vector and then perform the erasure-enhanced (improved) GRS attack

• Polynomial-time recovery if
$$p = O\left(\frac{\log(nm)}{nm}\right)$$

• Similar attacks for MinRank schemes and *q*-polynomial setting. No polynomial regime

Conclusion and Open Questions

- Non-trivial polynomial time recovery for RYDE, plus an improvement of the best generic attack
- Efficient attack for MIRA and MiRitH as long as roughly 73-74% of the secret key material is leaked (NIST-I)
- Initiated the study of partial exposure of the witness in constructions following the MPC-in-the-Head paradigm

Conclusion and Open Questions

- Non-trivial polynomial time recovery for RYDE, plus an improvement of the best generic attack
- Efficient attack for MIRA and MiRitH as long as roughly 73-74% of the secret key material is leaked (NIST-I)
- Initiated the study of partial exposure of the witness in constructions following the MPC-in-the-Head paradigm
- Can we design an algorithm that is able to exploit information on the witness as well as the secret key?

THANKS! QUESTIONS?

https://eprint.iacr.org/2024/2070